moabb.pipelines.deep_learning.KerasDeepConvNet#
- class moabb.pipelines.deep_learning.KerasDeepConvNet(loss, optimizer='Adam', epochs=1000, batch_size=64, verbose=0, random_state=None, validation_split=0.2, history_plot=False, path=None, learning_rate=0.0009, drop_rate=0.5, **kwargs)[source]#
Keras implementation of the Deep Convolutional Network as described in [1].
This implementation is taken from code by the Army Research Laboratory (ARL) at vlawhern/arl-eegmodels
We use the original parameter implemented on the paper.
Note that this implementation has not been verified by the original authors.
References
- 1
Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., … & Ball, T. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization. Human brain mapping, 38(11), 5391-5420. https://doi.org/10.1002/hbm.23730
Notes
New in version 0.5.0.
- set_fit_request(*, sample_weight: Union[bool, None, str] = '$UNCHANGED$') KerasDeepConvNet [source]#
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.
- set_partial_fit_request(*, classes: Union[bool, None, str] = '$UNCHANGED$', sample_weight: Union[bool, None, str] = '$UNCHANGED$') KerasDeepConvNet [source]#
Request metadata passed to the
partial_fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topartial_fit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topartial_fit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters
- Returns
self – The updated object.
- Return type
- set_score_request(*, sample_weight: Union[bool, None, str] = '$UNCHANGED$') KerasDeepConvNet [source]#
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.