moabb.datasets.Nakanishi2015#
- class moabb.datasets.Nakanishi2015[source]#
SSVEP Nakanishi 2015 dataset.
PapersWithCode leaderboard: https://paperswithcode.com/dataset/nakanishi2015-moabb
Dataset summary
#Subj
#Chan
#Classes
#Trials / class
Trials length
Sampling rate
#Sessions
9
8
12
15
4.15s
256Hz
1
This dataset contains 12-class joint frequency-phase modulated steady-state visual evoked potentials (SSVEPs) acquired from 10 subjects used to estimate an online performance of brain-computer interface (BCI) in the reference study [1].
References
- 1
Masaki Nakanishi, Yijun Wang, Yu-Te Wang and Tzyy-Ping Jung, “A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked Potentials,” PLoS One, vol.10, no.10, e140703, 2015. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140703
- data_path(subject, path=None, force_update=False, update_path=None, verbose=None)[source]#
Get path to local copy of a subject data.
- Parameters
subject (int) – Number of subject to use
path (None | str) – Location of where to look for the data storing location. If None, the environment variable or config parameter
MNE_DATASETS_(dataset)_PATH
is used. If it doesn’t exist, the “~/mne_data” directory is used. If the dataset is not found under the given path, the data will be automatically downloaded to the specified folder.force_update (bool) – Force update of the dataset even if a local copy exists.
update_path (bool | None Deprecated) – If True, set the MNE_DATASETS_(dataset)_PATH in mne-python config to the given path. If None, the user is prompted.
verbose (bool, str, int, or None) – If not None, override default verbose level (see
mne.verbose()
).
- Returns
path – Local path to the given data file. This path is contained inside a list of length one, for compatibility.
- Return type